Jet Spaces in Complex Analytic Geometry: an Exposition
نویسنده
چکیده
In [7] Pillay described the model-theoretic significance of a result in complex analytic geometry due to Campana [1] and Fujiki [2]. These notes are an exposition of the “jet space” constructions that underly the Campana/Fujiki theorem. In particular, we discuss infinitesimal neighbourhoods as well as the sheaves of principal parts, jets, and differential operators. The material is drawn largely from Grothendieck [4] and Kantor [5]. We also describe how these constructions are used by Campana and Fujiki.
منابع مشابه
An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملHeights, algebraic dynamics and Berkovich analytic spaces
The present paper is an exposition on heights and their importance in the modern study of algebraic dynamics. We will explain the idea of canonical height and its surprising relation to algebraic dynamics, invariant measures, arithmetic intersection theory, equidistribution and p-adic analytic geometry. AMS Classification 2000: Primary: 14G40; Secondary: 11G50, 28C10, 14C17.
متن کاملTopology of Nonarchimedean Analytic Spaces and Relations to Complex Algebraic Geometry
This note surveys basic topological properties of nonarchimedean analytic spaces, in the sense of Berkovich, including the recent tameness results of Hrushovski and Loeser. We also discuss interactions between the topology of nonarchimedean analytic spaces and classical algebraic geometry.
متن کاملDifferential-Algebraic jet Spaces Preserve Internality to the Constants
Suppose p is the generic type of a differential-algebraic jet space to a finite dimensional differential-algebraic variety at a generic point. It is shown that p satisfies a certain strengthening of almost internality to the constants. This strengthening, which was originally called “being Moishezon to the constants” in [9] but is here renamed preserving internality to the constants, is a model...
متن کاملReduce the maximum scour depth downstream of Flip Bucket Spillway through the spillway geometry optimization (study released spillway dam Kurdistan)
The Performance of shooting pool, in addition to the quality of the area in which the flow collides with it, depends to the height of the jet drop, the angle of the water flow, the depth of the jet and the concentration of the jet. By increasing the height of the jet drop, the fall velocity increases and subsequently the jetchr('39')s energy will be more intrusive. Different collision area from...
متن کامل